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INFORMATION CONTENT AND SENSITIVITY OF MATRIX ELEMENTS TO

STRUCTURAL CHANGES IN COMPLEX SCATTERING SYSTEMS

[. STATEMENT OF THE PROBLEM AND RESEARCH ACTIVITIES

This research- ds carried out to investigate the basic

problems that are Ienteal to understanding light scattered from

complex systems. Si:aple systems refer to those spherical, ellip-

tical and cylindrical geometries that are directly amenabl, to

theory. Computer programs can calculate every property of these

systems and can evaluate the data extracted from experimental

systems. Theoretical results are known to the accuracy of the

fundamental optical and electrical constants, and experimental

data can be achieved to arbitrary high degree of accuracy.

Laboratory devices work tinder ideal conditions whereas diagnostic

equipment for field work is limited by (short) measurement time,

angular resolution, spatial resolution, angular view ( 0-scan)

and time for data analysis of complex curves to get the desired

information.

One problem concerns how much scattering data is needed, how

good it must be and how well it describes the scatterer (or

scattering system) in a practical way. Another problem concerns

how much information is contained in the various light scattering

matri: elements and whether changes in the signals caL be related

to chanles in particular optical or geometrical properties. The

statement of these problems and the experimental attack on them

are summarized in six research objectives listed below:

A. Measure the matrix elements Sij for perfect scattering

systems and preprations of exactly known mixtures of perfect



systems. Determine which matrix elements more accurately de-

scribe the system and signify a change.

B. Procure and prepare perfect scattering systems and

exactly known mixtures of perfect systems.

C. Apply Fourier transforms, curve length, method of

moments, area ratios, inflection points, polynomial fits, etc. to

Iight scattering data to elucidate and quantify small changes in

the data that arise from sma Il changes in the system.

D. Investigate the role of "average, mean or effective"

re.fractive index as it pertains to a complex scattering system

and determine if it is a relevant optical constant for -describing

the system.

E. Investigate how much data is necessary to uniquely

determine the optical properties of a scattering system. Data

acquisition can be limited to finite cngular resolution, limited

-scan, noise and imperfect optical elements. Determine what

compromises and shortcuts in be taken.

F. Prepare a tutorial report discussing the two common

systems for treating the Stoke's vector V (I, Q, U, V) and V

= (le, Ir, lqq Iv), the elements of the scatter ng matrix in each

system and the relationship oetween these matrices and the

experimental measurements actually made,

All research objectives have been met. Some results have

boen published, some are submitted for publication and some are

..n final stages of preparation (See Appendix B). The rest of this

final report will discuss some of our most important results and

show some of the data that will ultimately appear in

I I I I I I I I I I I I l



pub! ished papers.

II. THE RESU1TS

We have procured and prepared perfect scattering systems and

mixtures of perfect systems. These are perfect spheres (puir-

chased from Duke Chemical Company), perfect: fibers (fahricated in

our laboratory), polydispersed irregular particle systems (pur-

chased from Duke Chemical or fabricated by us), and perturbhd

fibers (fabriCated by us). in all cases we have attempted to

document the optical, electrical and geometrical p.'operties of

the particle or particle system to make the experimental data

uiseful for theorists. This satisfies research objective B.

We have measured and calculated the matrix elements Sij for

perfect scattering systems and preporations of exactly known

mixtures. The data were used to determine which matrix eleients

were needed t o characterize the system and which ones were I'ost

sens;tive to isystem changes. This satisfies research objective

A. The net riesult is :-n experimental and theoretical data hank

which can be manipulated and studied to examine how geomotr ical,

optical and electricil constants contribute to the various S8 j

light scattering curves.

The experimental and theoretical results of our studies of

the above mentioned data bank and its manipulation are vast and

are still being analyzed. Some results are discussed below.

A. Resnse o_ to Change in Partic1e Size.

Figures I through 5, which demonstrate how certain

miatrIx elements change with particle size, is pertinent ti

research obj~ect iv,- C.I 9t
. ..f" -.
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1. Response to large size change.

Figure I shows the four non-zero matrix elements for

a very small Rayleigh sphere (r - O.07511). It can be solved

ex .ctly using the approximation that r << « yielding the three

fuictinns sin 2.1, cos ,and zero for the matrix elements S12, 1 33

and S34  respectively. Scanning each particular matrix element

from Figure 1 to Figure 5 shows how each matrix element chang.es

with increasing sphere radius. Increasing the radius approxi-

mately a factor of 2 going from Figure 1 to 5 causes all marrix

elo.ments to develop high froqency phase information. Each

inatrix element will be discussed individual ly.

Matrix element SI

ThIs matrix element represents the total intensity of Ilight

scattt red by the particle. Unpolarized light illuminates the

scairtt,.rer, and the total scattnred intensity is mesored. Ths-

vert ioa I s.i I e is log:ir ithmet ic , the curve has been norma I ized to

,iwtm(imIm intensity at 0. As the partit: 10 increases sizo, S1 I

oScil lates with increasing frequency. We also note that the

r itio light scattered forward, ( - 0) to back ( - IP, t)o)

increases. Larger pa)rt icles scatter more light in the forward

direction. For the part 1c ie studted here the rat io changes bV 3

)rders of magnitude. While this is generally ,rut, for low jndex

part itc- es, the, rait io decreases as n, increases.

Matrix element S 1 9

This matrix element represents the ext-nt to which the

part ic le can d1st ingi.ish hetween horizontally and vert ica l ly

po larized I ight. If hoth were treated equally by the part ic le

is



S 1 2 would be zero. As r increases, the initially smooth sin 2

curve becomes distorted In the back scatter region, and finally

developes oscillations about zero as large as +1OOZ.

Matrix element S 3 3

This matrix element represents the extent to which the

particle can distinguish between +450 and -450 polarization. if

both were treated equally S3 3 would be zero. As r increases, the

initally smooth cos curve becomes distorted and like S 1 2

develops oscillations that can vary rapidly between +1OOZ.

Matrix element $34

This matrix element represents the extent to which the-

particle can distinguish between left-hand and right-hand c-ir'cu-

Lar polarization when illuminated with +450 or -45o linear

polarization. If all combinations were treated equally S 3 4 would

be zero. As r increases, the initially zero S34 signal becomes

non-zero and like the other Sip develops oscillations of increa-

sing frequency and amplitude.

We can make the following observations about how the matrix

elements respond to a large change in spherical particle size:

a. All matrix elements develop strutcure as the particle

size Increases. Quantifying the structure makes it possible to

relate structure to particle size in some cases. For example in

Figures 1-5 the number of maxima (or minima) in any matrix

element curve is eqital to the size of the particle in microns to

within 10 . hlowever, this Is a special case and the results are

fortuitously accurate for this combinat ion of nl, n 2  and r.

b. L. rLe particles scatter more light into all angles than

small pIrticles. For the partic Ies disceissed here there Is ae lot0

lo



intensity difference between the small and large particle scatter-

Ing efficiency.

c. The ratio (forward scatter:back scatter) Increases as

tre_ partic le size increases. This is generally true for low

refractive index ni. However as nI increases the ratio decreases

for constant r. Inicreasing absorption however increases the

ratio by removing more l ight from th- backs -atter.

d. Regardless of particle siz refractive index or absorp-

tion the fol lowing bounds &jvern all Si for spheres.

St [initial ly decreases as ,' increases from zero,

S 1 2 is always zero at 0 and o = 1800,

S 3 3 is always +100% at t 0 and -100% at o - 1800

S 3 4  is always zero at O = 0 and 0 - 180o

and zero everywhere for "very small" particles.

These bounds are obeyed even by mixtures of perfect spheres

polydispersed in n 1 , n 2 and r. Fibers obey only the bound on S, I

and the bound that S 3 4 is zero everywhere for "very sma ii" fiber

rad i i

e. Some special comments about $34

The matrix element S34 has distinguished itself as a parti-

cularly important signature and sensitive probe of scattering

systems. Our initial experiments many years ago with biophysical

particles woold have ended without success if S34 did notL

uniquely survive to distinguish diffe-ent polydispersed blologi--

cal particle systems. It is unfortunate that S34 is not as

oxperimentally accessable as the matrix elements SI 1  and Sl2

which are responsible for most of the information obtained from

17



remote scattering systems. S 3 4 is first a true indicator of

"large particles" becoming non-zero as particle size goes from

small to ldrge (Rayleigh to Mie). For the system discussed here,

S34 already shows a non-zero signal for r - O.15u, 10.4416t; (nl

1.10). Experimentally S3 4 is a powerful probe since large ampli-

fication of an initially zero S 3 4 signal can yield a "full ;cale"

reading for an arbitrarily smoll change in the signal. Thos the

smallest deviation from zero will appear directly. This tech-

nique does not work for S 1 2 and S3 3 which already have values of

+100 for small particles. For these elements, a small change must

occur on an already large (full scale) signal. We have experi-

mentally and theoretically investigated the ability of S 1 2 and

S33 to respond to a small Increase in r by subtracting from them

the "Rayl.igh component", S1 2 = sin2., and S *2: . The

result, when amplified, can display approximately the same sensi-

tivity as S 3 4 . However, since noiseless signals do not occur

experimentally, subtraction does not yield the same accuracy

achieved from measuring S,34  directly.

2. Response of S 11 to Small Size Change (Difference

Curves) .

Figures 1 through 5 which show the matrix elements

for the five sphere sizes r - 0.075, 0.15, 0.30, 0.60 and 1.0

microns also show the m itrix element signals that occur when the

init ial size is changed by -. small value of 1%. Both matrix

elem,,nt curves ire indicated hy solid lines, and their difference

SL ijSf j is shown as a dotted line. We observe the fol lowing:

a. F'igure 1. A 1% change in raditus oF 0.0 ?5: (Rayloigh)

pairtic e is not detected graphically at this level of sensiti-

18

/



vity. The actual numbers used to plot the curves show differ-

ences less than 0.1%, within the noise of most experiments.

b. Figure 2. A 1% radius change in a 0.15o. particle

changes all matrix elements. In addition, the difference occurs

in the back scatter (0 900). S 3 4  shows the largest diffarence,

hut is in competition with S 1 2 .

c. Figure 3. For Larger particles (r 0.311) changes occur

both in forward and back scatter but are larger in the back

scatter. Again S 3 4  is most sensitive.

d. Figure 4. A 1% change in even larger particles (r - 0.b61)

cause changes throuaghout the entire -range. Differences are

larger in the back scatter and S34 is most sensitive.

e. Figure 5. For our largest particles (r l.01), ampli-

tude shifts caused by 1% size changes cause extremely large

difference signals. Note that all difference curves go' off the

seale, (sLIj-SSij) > Sfj(max) - 100% in the back scatter. $34 is

most sensit iv.' and the most sensitive region is 135' 1.60 .

f. General Conclusions.

Snail ch!inges ( 1%) in the radii of very smal I particles are

not detected by any of the Sli. 1)ifferences increase as particle

size increases and appear in all Sij. "34 1s the most sensitive

giving the larg~st Jifference. All differences are larger in the

back scat ter. Phase sh t fts are not as dramait ic as ampI itude

shifts. This is demonstrated by S34 in its response to a t

C hang e in a i . p r t i c I e a t t 450 (Figtire 5).

Atl experimintal and theoret ical results discussed here are

for perfect single spheres ;ind fibers. Their lImplicat ions become

1 9



very important for complex scattering systems such as maixtures of

polydispersed perfect spheres, irregular single particles or

mixtures of irregular particles. The bounds on Sij at o 00,

900 and 1800 discussed earlier will be violated on departure from

spheric ity.

B. Arc Length as a Probe For Change.

Scanning each particular matrix element from Figures I

through 5 shows how each matrix element responds to an increasing

sphere radius. The most obvious change in all signals is the

increasing frequency and amplitude of the oscillations. This

feature manifests itself as a change in arc length. We studied

the arc length of each Sij as a function of particle radius and

obtained Figures 6 and 7.

The arc length is simply the geometrical length of the curve

in arbitrary units. A straight horizontal line for all Sij is
assigned an arc length of 180 (for 180°). For S12, S3 3 and S3 4 a

straight horizontal line starting at o - 0, n - 0% going to

0. = 0, 7 - 100%; to n - 1800 1 - 100%; and then to ti = 180' 0%

has an arc length of (100 + 180 + 100) 380 units. The same

geometricil value occurs for the normalized S curves. Arc

length becomes valuahle when different curves or familIes of

curves are compa red

Figure 6 shows two useful resul ts:

1. Arc lengths of S 1 2 , SV3 and S34 increase more or less

monotonical ly witn increasing radius.

2. The arc lengths of Sil oscit late wildly and aro not

monotonic.

20. ... =.
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Figure 6. The Arc Length of Four Matrix Elements as a Function

of Fiber Radius for nI = 1.4662, n 2  0.0 and \ = 0.4416 Microns.
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The arc length of SlI is not an accurate probe for changing

particle siza. For a particular radii (close to r - 1.0 1 ) the

arc length could decrease by more than a factor of 3 for a 30%

increase or decrease in size. The other Sij possess some struc-

ture but give more accurate results. The relationship between

radius r and arc length AL of S3 3 and S3 4 is given by

"AL -180
r(microns) -113.2

Note that for larger particles (r ) l.5;1) the AL of S 1 2  is larger

than that oi S 3 3 and S 3 4 . For smaller particles (r < l.O) the

relationship is

r(microns) (AL-180

Although it is well-known that certain features of Sij

curves change with particle property, previously, only limited

attention has been given to quantifing the change os we are doing

here. These observations are important for monitoring changes

that occur in system parameters during time resolved or biolo-

gical experiments, for example, where often the exact optical

properties are not as important as knowing what changed and by

how much.

Further study of S 1 1  arc length led to some intercsting

.esults. We noticed that the arc length oscillations in S11 are

similar to the well-known cross section oscillations that occur

as a function of particle radius. More fundamental than the arc

length however is the area under S11 which represents the total

energy scattered by the particle. This line of reasoning led to

23



Figure 7 which shows how the arc length compares to the area
S4 3

under Si1 which when multiplied by - -ar yields the well-known

extinction coefficient as a function of r. Therefore arc length

of Sit has a behavior similar to the fundamental particle

property--the extinction cross section. The other sij arc

lengths are not fundamental but useful nevertheless as probes for

changes in particle parameters.

Results of similar arc length data as a function of n, and

n2 will be published.

C. Fourier Transforms as a Probe For Change.

The increasing oscillatory structure on sij curves

resulting from increasing radius has been shown in Figures 1-5.

The'Sij curves are excpansions of integral order Bessel functions

whose amplitu&es are varied by harmonic functions. Our studies

of the Fourier transforms of the Sij give additional information

about the scatterer and the relative sensitivity of various Sij

to particle parameter change. Figures 8, 9 and 10 show the FT

three sets of particles respectively: r - 0.25ýi and 0.30 1 ; r

O.55ti and 0.6011; and r - 2.51, and 2.61,. We observe, the following:

1. Increasing particle size introduces more oscillatory

structure (high2r frequency components) on alt Si 4 .

2. Si1 has a low frequency continuum lacking significant

monochromatic features.

3. s3 3  is only slightly better than SI possessing

a low frequency continuum (initially it is cos 2 n ) and a few

quantized frequency components for larger particles.

4. S 1 2 and S3 4 are very competitive. They both display

24
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r 0.25 microns r = 0.30 microns

534 $34

$33 533

S12 S1 2

SII SII

0 25 50 75 0 25 50 75

FREQUENCY (I/A)

Figure 8. Amplitude-Frequency Distributions of Four Non-Zero

Fiber Matrix Elements and Their Response to a Small Change in the

Radius of a 0.25 Micron Fiber. x4416A nI : 1.466 n2  = 0.
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r = 0.55 microns r = 0.60 microns

S 3 4  34
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Figure 9. Amplitude-Frequency Distributions of Four Non-Zero

Fiber Matrix Elements and Their Response to a Small Change in the

Radius of a 0.55 Micron Fiber. .,4416A n1  = 1.466 n2  0.
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Figure 10. Amplitude-Frequency Distributions of Four Non-Zero

Fiber Matrix Elements and Their Response to a Small Change in the

Radius of a 2.5 Micron Fiber. x4416A n1  1.466 n2  = 0.

27



extensive quantized frequency information for .he same size

particle and also compete as a detector of small size change.

However S 3 4 might be more reliable since the nlmber of components

increase as r increases whereas the number of onponents in S 1 2

remain constant or change only slightly. When components and

amplitudes are taken into account, S1 2 and S 3 4 1 are comparable and

serve well as signatures and indicators of change. SI2 is more

readily accessible to remote sensing experimen s since it couples

unpolarized (total intensity) incident on the scatterer with

horizontally polarized scattered light.

It is interesting to observe the relative efficiency of

representing the Sij in terms of Bessel functions as compared to

Fourier transforms - both of which make a complete mathematical set.

To generate a part icular set of Sjj requires aibout twice to three

times as many Fourier coefficients as Bessel qoefficients. This

is due to the natural cylindrical geometry of Ithe scattering

system which lends itself directly to Bessel'i equation and a

Bessel function solution.

D. Information Contained in Forward and Back Scatter

We investigated the amount of information contained in

the forward scattered and back scattered light into small - near

- 0 and - 1800, respectively. This satisfies objective F. Many

ground based remote sensing experiments have aiccess only to back

scatter information from light scattered hacki to the laser site.

Figure 1 1 shows the intensities of forward ( ? = 0") and back

scattered ( r 180') Light as a function of sphere radius for

spheres with various optical constants. Figure II can be studied

in several ways.
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Change n1 from 1.1 to 1.7 with n 2 - 0 go from A to C.

Change na from 1.1 to 1.7 with n 2 - 0.5 go from B to D.

Change n 2 from 0 to 0.5 with n, - 1.1 go from A to B.

Change n 2 from 0 to 0.5 with n 1 - 1.7 go from C to D.

a. Figure 11-A. The forward scatter ( = 0) from particles

of small n1 (nI - 1.1) and n 2 (n 2 ' 0.0) increases smoothly and

monotonically over 10 orders of magnitude for a one order of

magnitude increase in radius. This says that one 1 .5p particle

scaLLers, the the forward direction, as much light as 0I1000.15u

particles. This is an effective way to hide particles or

particle information.

The back scatter (0 - 1800) increases also, but only by 7

orders of magnitude. In addition it is not monotonic. For

example, increasing or decreasing the size of a 0.45 particle

incrPases the scattered intensity by 3 orders of magnitude making

the back scatter intensity information non-unique to particle

size. Back scatter measurements are very sensitive to particle

change, but not good indicators of particle size. They are good

probes but not good signatures.

b. Figure II-B. Absorption, (n2 - 0.5) destroys virtually alI

structure in the back scatter. Both forward and back scatter

curves are essential ,y monotonic. flowever, the intensity ratio:

forward to back scatter, remains about the same as that for

particles with zero absorption (n 2  - 0) shown in Fig. A.

c. Figure 1I-C. The intensity of both forward and back

scattered light from large index particles (n 1  - 1.7) with no

absorption (n 2  0) oscillates with increasing particle size.
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3The forward scatter oscillations are larger, the back scatter

oscillations are smaller for larger nI. In addition, the ratio

of forward to back scatter remains essentially constant (-.l02),

independent of particle size.

d. Figure 11-). Scattering from high index (nI - 1.7) and

high absorption (n 2 - 0.5) spheres displays oscillations in the

back scatter only for smaller particles (r < 0. 7 w).

e. General Conclusions

Low refractive index spheres scatter light in the forward

direction with an. intensity that increases smoothly and monotoni-

cally with increasing particle size - essentially independent of

the amount of absorption. Absorption destroys oscillation in

both the forward and back scatter - essentially independent of

the value of nl.

Back scatter information is a sensitive probe for change but

not a unique indicator of size. Back scatter information that

does not oscillate with wavelength must come from particles with

large absorption (assuming that n 2  stays large over the (:-range).

Conversely substantial "ý-dependent oscillation in the back

scatter must be caused by low absorption and low index particles.

In general, there is more information in back scatter than in

forward scatter - which is fortunate for many ground based remote

sensing experiments.

All observations discussed above are valid for single

spheres or monodispersed sphere systems. Polydispersity and/or

systems of irregular particles will destroy phase-amplitude infor-

mation. Exactly what information remains is the subject of our

present research.
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E. Average, mean or effective refractive index

This study satisfies research objective D and has been

published in Aerosol Science and Technology 1:329-335(1982).

F. Stokes Vectors, Mueller Matrices and polarized light

scat tering

This study satisfies research objective F. A paper has

been submitted to the American Journal of Physics.

I11. FINAL COMMENTS

This final report describes the main thrust of our research

and a number of experimental results from which conclusions were

drawn to make our point concerning the information contained in

the matrix elements. At best, significant trends can be

established. To investigate all combinations of r, n 1  and n 2

would yield an infinitely large data bank too unwieldy to anal-

yze. We attempted to limit our particles into regions: size-

large, medium, small; refractive index and absorption-high,

medium, low and chose carefully combinations that will establish

a trend or generate an exception. This approach has been produc-

tive and has given good insight to the information contained in

light scattering data.
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APPENDIX A

COLLOQUIA, SEMINARS AND CONFERENCES

Conferences: 1. CSL on light scattering, Aberdeen, Maryland,

June 15-17, 1981.

2. Conference on Aerosol Science, Santa Monica,

California, February 20-23, 1982.

Colloquia: 1. Optical Sciences Department, University of

Arizona, Spring 1982.

2. SERI, Golden, Celorado, Summer 1981.

3. Physics Department, University of Lund,

Lund, Sweden, Summer 1982.

4. ?hysics Department, University of Arizona,

Fall 1982.

Seminars: 1. SERI, Golden, Colorado, Summer 1981.

2. Physics Department, University of Lund,

Lund, Sweden, Summer 1982.

33



BLANK

3
i 34



APPENDIX B

PAPERS

14 "Masking of Information in Light Scattering Signals from

Complex Scatterers", William S. Bickel, Hashim A. Yousif and

Wilbur M. Bailey, Aerosol Science and Technology 1:329-335

1982).

"2J "Light Scattering from Fibers - an Extension of a Single Slit

Diffraction Experiment", Wolfgang Gilliar and William S. Bickel,

submitted to Am. J. of Physics.

3. "The Physical and Optical Properties of Agglomerated Gold

Films Optical Scattering from Surfaces", Richard Zito, William S.

Bickel and Wilbur M. Bailey, submitted to Applied Optics.

4• "Stokes Vectors, Mueller Matrices and Polarized Scattered

Light", William S. Bickel and Wilbur M. Bailey, submitted to Am.

J. Physics.

5f "Light Diffraction Studies of Single Muscle Fiber as a

Function of Fiber Rotation", Wolfgang Gilliar and William S.

Bickel, accepted by Biophysical Journal.

6- "Light Scattering from Geometrically Perturbed Thin Fiber,"

William S. Bickel and Gordon Videen, to be submitted to App.

Optics.

7!. "Information Content in LS Signals from Mixtures,

Plolytidpersed and Multiple Scattering System", William S. Bickel,

Wilbur M. Bailey and Hashim A. Yousif, to be submitted to Applied

Oipt ics.

35

-...............-.--.. ~-.-



8. "Sensitivity of LS Matrix Elements to Small Changes in

Structural and Optical Constants of Perfect Scatterers", William

S. Bickel, W. M. Bailey and H. A. Yousif, to be submitted to

Aerosol Science and Technology.

9. "Scattering Corrections to ORD and CD Measurements", William

S. Bickel, to be submitted to App. Optics.
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